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ABSTRACT

Context. Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the ob-
servational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative
equation according to the expected physical conditions of the systems under study.
Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal
and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the
system has reached its steady-state equilibrium.
Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E
and optical depth of the system τ using finite-differences for the partial derivatives, and imposing specific boundary conditions for the
solutions. We treated the case of cylindrical accretion onto a magnetized neutron star.
Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for
an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In
both cases higher values of the electron temperature and of the optical depth τ produce flatter and harder spectra. Other parameters
contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of
the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles.
Conclusions. The algorithm has been implemented in the xspec package for X-ray spectral fitting and is specifically dedicated to the
physical framework of accretion at the polar cap of a neutron star with a high magnetic field (>∼1012 G). This latter case is expected to
be typical of accreting systems such as X-ray pulsars and supergiant fast X-ray transients.

Key words. methods: numerical – X-rays: binaries – radiative transfer – magnetic fields

1. Introduction

The solution of the radiative transfer equation (RTE) that de-
scribes the modification of a seed photon spectrum due to
Comptonization in a plasma is a much debated mathemati-
cal problem. The equation in its full form is indeed integro-
differential (Pomraning 1973) and allows for analytical so-
lutions under some particular assumptions, such as electron
temperature Te = 0 (Titarchuk & Zannias 1998) or in the
energy domain when the emerging spectrum is a powerlaw
(Titarchuk & Lyubarskij 1995). If the photon energy exchange
for scattering is low (Δν/ν � 1), it is possible to perform a
Taylor expansion of the Comptonization operator around the
photon initial energy, which transforms the RTE from integro-
differential to purely differential (Rybicki & Lightman 1979);
this is known as the Fokker-Planck (FP) approximation. The
necessary conditions to allow this mathematical approach are
that the Compton-scattering process occurs below the Klein-
Nishina regime, namely when the electron temperature kTe is
subrelativistic (<∼100 keV), and that the optical depth of the
Comptonization region is τ >∼ 1. The regime of low tempera-
ture and high optical depth of the plasma indeed ensures that
the spectrum is almost isotropized, so that it is possible to use

the Eddington approximation for the specific intensity I(ν) =
J(ν) + 3∇· F(ν), where J and F are the zero and first moment of
the intensity field, respectively.

Moreover, if the plasma is not static but subject to dynami-
cal (bulk) motion with velocity u(τ), then another condition for
using the FP approximation is that v(τ) must be subrelativistic.
When all the above restrictions are considered, one obtains by
computing the first two moments of the RTE a main equation
that describes the shape of the angle-averaged emerging inten-
sity J(ν) of the Comptonization spectrum. The general form of
the RTE for the photon occupation number n(ν) = J(ν)/ν3 with
subrelativistic electron temperature in the presence of bulk mo-
tion was first derived by Blandford & Payne (1981, hereafter
BP81). Later, Titarchuk et al. (1997, hereafter TMK97) showed
that analytical solutions can be found if the velocity profile (as-
suming spherical symmetry) of the matter follows the free-fall
law, vR ∝ R−1/2. In this case, the equation can be written as
Lxn(x, τ) + Lτn(x, τ) = −s(x, τ) and the solution can be obtained
using the variable-separation method in the form

n(x, τ) =
∞∑

k= 1

ckRk(τ)Nk(x), (1)
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where ck and Rk(τ) are the expansion coefficients and eigenfunc-
tions of the space operator Lτ, respectively, while Nk(x) is the
solution of the differential equation

LxNk(x) − γkNk(x) = −s(x), (2)

where γk ∝ λ2
k and λ2

k is the kth-eigenvalue of the space operator.
The Comptonization spectrum is mostly dominated by the

first eigenvalue (see Fig. 3 in TMK97), while the terms Nk(x)
with k ≥ 2 represent the fraction of photons that leave the
medium without appreciable energy-exchange. Starting from the
results of TMK97, Farinelli et al. (2008, hereafter F08) de-
veloped a model (comptb) for the X-ray spectral fitting pack-
age xspec, which computes the emerging spectrum by means of
a numerical convolution of the Green’s function of the energy
operator with a blackbody (BB)-like seed spectrum. The model
has been successfully applied to a sample of low-mass X-ray
binaries hosting a neutron star (NS). The method of the variable
separation has also been adopted by Becker & Wolff (2007, here-
after BW07), to find analytical solutions of the RTE in the case
of cylindrical accretion onto the polar cap of a magnetized NS.
The starting equation in BW07 is formally the same as in BP81:
the most significant difference is that the Thomson cross-section
is replaced by an angle-averaged cross-section that takes into ac-
count the presence of the magnetic field (B ∼ 1012 G). Following
the results of Lyubarskii & Sunyaev (1982), BW07 assumed a
velocity profile v(τ) ∝ −τ, which allowed the RTE to be separa-
ble in energy and space. Note that the assumed velocity profile
implies that the matter flow stagnates at the stellar surface, which
is at odds with the solution of TMK97, where the matter veloc-
ity is increasing towards the central object, which can be either
a NS or a black hole (BH). When the velocity profile is not free
fall-like (TMK97, F08), or ∝τ (BW07), the variable separation
method can no longer be applied and the solution of the RTE can
be obtained only with numerical methods.

We report a numerical algorithm that allows the solution of
the RTE in the FP regime using finite-differences for any desired
velocity profile and seed photon spatial and energy distribution.
We apply in particular it to cylindrical accretion towards the po-
lar caps of a magnetized NS, following the approach of BW07.
The algorithm essentially uses a relaxation method, therefore it
finds the asymptotic (stationary) solution of the RTE for a given
initial value (at time t = 0) condition. Our work is structured
as follows: in Sect. 2 we describe the kernel of the algorithm
for generic two-variable elliptic partial differential equations; in
Sect. 3 we formulate the problem for the general RTE and appro-
priate boundary conditions; in Sect. 4 we consider the more spe-
cific case of a system configuration with azimuthal symmetry,
typical of cylindrical accretion; in Sect. 5 we show the emerging
spectra obtained for different sets of the theoretical parameter
space; finally, in Sect. 6 we briefly discuss possible astrophysi-
cal consequences and implementations (e.g., for xspec) derived
from the application of the algorithm.

2. The general elliptic partial differential equations

The algorithm we report is essentially based on the relaxation
methods, which allow one to find the solution of a boundary el-
liptical problem. The differential equation has to be written by
finite differences. Once the sparse matrix is defined, it can be
split into layers over which an iteration process is applied until a
solution is found (Press et al. 1992). The general form of a linear

second-order elliptic partial differential equation with vanishing
mixed derivatives and a source term can be written as

P(x, y)
∂2u
∂x2
+ Q(x, y)

∂u
∂x
+ R(x, y)u +W(x, y)

∂2u
∂y2

+Z(x, y)
∂u
∂y
= −S(x, y). (3)

The solution is numerically obtained by including in the right
hand side of Eq. (3) a derivative over a fictitious time ∂u/∂t.
Iterating for a sufficient number of steps over t, the initial guess
function at t = 0 converges for t → ∞ to the time-independent
solution of Eq. (3).

We define a three-dimensional grid of discrete points for the
variables x, y and t;

xi = x0 + ihx, i = 0, 1, . . . ,Nx,

y j = y0 + jhy, j = 0, 1, . . . ,Ny,

tm = t0 + mht, m = 1, 2, . . . ,M, (4)

where hx, hy, ht are the grid spacing. The function u(x, y, t) is
evaluated at any point of the grid, so we write it as u j,m

i . We
write the first and second derivatives over the variables using
finite differences:

∂u
∂x
=

u j,m
i+1 − u j,m

i

hx
,
∂2u
∂x2
=

u j,m
i+1 − 2u j,m

i + u j,m
i−1

h2
x

,

∂u
∂y
=

u j+1,m
i − u j,m

i

hy
,
∂2u
∂y2
=

u j+1,m
i − 2u j,m

i + u j−1,m
i

h2
y

,

∂u
∂t
=

u j,m
i − u j,m−1

i

ht
· (5)

Substituting the above definitions into Eq. (3) and collecting
terms, we obtain

a j
i u

j,m
i−1 + b j

i u
j,m
i + c j

i u
j,m
i+1 + d j

i u j−1,m
i + e j

i u
j,m
i + f j

i u j+1,m
i

=
(u j,m

i − u j,m−1
i )

ht
− S j

i , (6)

where

a j
i =

P(xi, y
j)

h2
x
,

b j
i = −

2P(xi, y
j)

h2
x

− Q(xi, y
j)

hx
+ R(xi, y

j),

c j
i =

P(xi, y
j)

h2
x
+
Q(xi, y

j)
hx

,

d j
i =

W(xi, y
j)

h2
y

,

e j
i = −

2W(xi, y
j)

h2
y

+
Z(xi, y

j)
hy

,

f j
i =

W(xi, y
j)

h2
y

− Z(xi, y
j)

hy
,

S j
i = S(xi, y

j). (7)

The operators over the x and y variables are then defined as

Δx = a j
i + b j

i + c j
i ,

Δy = d j
i + e j

i + f j
i . (8)
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The solution procedure consists of dividing Eq. (6) into two
equations. The first gives us the solution for an intermediate
m − 1/2 layer, while the second provides the solution for the
m-layer. As starting point we need to establish an initial guess
for the function at m = 1. The system of equations to be solved
is thus

Δxum−1/2 + Δyu
m−1 =

um−1/2 − um−1

ht
− S ,

Δy(um − um−1) =
um − um−1/2

ht
, (9)

in which we have temporarily dropped the indices i, j. From the
system we notice that the intermediate layer m − 1/2 is needed
only to build up the solution at the subsequent layer in m. The
numerical accuracy of the solution can be estimated by combin-
ing both equations in the system (9), which gives

Δxum + Δyu
m =

um − um−1

ht
− S + htΔxΔy

(
um − um−1

)
. (10)

The third term on the right-hand side of Eq. (10) represents the
residual error in the numerical solution. As a first step, we collect
the terms with the same index in both Eqs. (9) and obtain(
Δx − 1

ht

)
um−1/2 = −

(
Δy +

1
ht

)
um−1 − S ,

(
Δy − 1

ht

)
um = Δyu

m−1 − um−1/2

ht
· (11)

Both equations are defined inside a 2D (x, y)-domain, with
boundary conditions defined according to the specific problem
under consideration. First, for any m and j values, we must
impose the boundary condition on the left-hand side of the
x-domain (i = 0) for the function u j,m−1/2

0

u j,m−1/2
0 = g

j
0, (12)

while the source term S j
0 is defined at the beginning. Thus, for

i = 0, Eq. (6) can be written as

u j,m−1/2
0 = L̂ j

0u j,m−1/2
1 + K̂ j

0, (13)

where

L̂ j
0 = −

c j
0

b j
0 − 1

ht

, K̂ j
0 =

Ŝ j,m−1
0

b j
0 − 1

ht

,

Ŝ j,m−1
0 = −

(
d j

0 + e j
0 + f j

0 +
1
ht

)
u j,m−1

0 − S j
0, (14)

with the coefficients determined in Eq. (7). For i = 1, using
Eq. (13) we obtain(

a j
1L̂ j

0 + b j
1 −

1
ht

)
u j,m−1/2

1 + c j
1u j,m−1/2

2 = Ŝ j,m−1
1 − a j

1K̂ j
0, (15)

which can be written as

u j,m−1/2
1 = L̂ j

1u j,m−1/2
2 + K̂ j

1, (16)

where

L̂ j
1 = −

c j
1

a j
1L̂ j

0 + b j
1 − 1

ht

, K̂ j
1 =

Ŝ j,m−1
1 − a j

1K̂ j
0

a j
1L̂ j

0 + b j
1 − 1

ht

· (17)

Iterating the process, we obtain the general form

u j,m−1/2
i = L̂ j

i u j,m−1/2
i+1 + K̂ j

i , (18)

where

L̂ j
i = −

c j
i

a j
i L̂ j

i−1 + b j
i − 1

ht

, K̂ j
i =

Ŝ j,m−1
i − a j

i K̂ j
i−1

a j
i L̂ j

i−1 + b j
i − 1

ht

· (19)

At the right boundary of the x-domain (i = Nx), we impose the
second boundary condition

u j,m−1/2
Nx

= g
j
Nx
. (20)

Now, using Eq. (18) we can thus build up the solution over the
x-variable iteratively as

u j,m−1/2
Nx−1 = L̂ j

Nx−1g
j
Nx
+ K̂ j

Nx−1,

u j,m−1/2
Nx−2 = L̂ j

Nx−2u j,m−1/2
Nx−1 + K̂ j

Nx−2,

. . . . . .

u j,m−1/2
0 = L̂ j

0u j,m−1/2
1 + K̂ j

0. (21)

Therefore, the construction of the solution is obtained in two
steps: a bottom-up process which allows one to build the co-
efficients L̂ j

i and K̂ j
i (Eq. (19)) starting from the left boundary

condition on u j
0 (Eq. (12)), followed by a top-down procedure

determined by the right boundary condition u j
Nx

(Eq. (20)).
Once the solution over the x-variable for the m − 1/2 layer

is obtained for any j (the index of the y variable), we then seek
the solution of the second equation in the system (9) by follow-
ing the same procedure described above with initial boundary
condition at j = 0

u0,m
i = L̃0

i u1,m
i + K̃0

i , (22)

and, similarly to Eq. (19)

L̃ j
i = −

f j
i

d j
i L̃ j−i

i + e0
i +

1
ht

,

K̃ j
i =

S̃ j,m
i − d j

i K̃ j−1
i

d j
i L̃ j−i,m

i + e0
i +

1
ht

, (23)

where

S̃ j,m
i =

(
d j

i + e j
i + f j

i +
1
ht

)
u j,m−1

i − u j,m−1/2
i

ht
, (24)

depends on the solutions u j,m−1/2
i and u j,m−1

i obtained in the layers
m − 1/2 and m − 1.

As required for the procedure over the x-variable, the coef-
ficients L̃ j

i and K̃ j
i , built from L̃0

i and K̃0
i , are determined by the

left boundary condition ( j = 0) for the function u0
i , and the so-

lution for any j is determined by the right boundary condition
u

Ny
i = g

Ny
i :

u
Ny−1,m
i = L̃

Ny−1
i u

Ny,m
i + K̃

Ny−1
i ,

u
Ny−2,m
i = L̃

Ny−2
i u

Ny−1,m
i + K̃

Ny−2
i ,

. . . . . .

u0,m
i = L̃0

i u1,m
i + K̃0

i . (25)
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After constructing the solution over the x and y variable, the so-
lution of the top layer m becomes the initial function of the bot-
tom layer related to iteration m + 1 according to the scheme

m = 1→ (u0, u1/2, u1),

m = 2→ (u1, u3/2, u2),

. . . . . . . . .

m = M → (uM−1, uM−1/2, uM). (26)

It is also worth mentioning that at the first iteration m = 1 an
initial guess function u j,0

i must be assumed, which is needed to

find the solutions u j,1/2
i and u j,1

i in the system (9). The loop over
m stops when the same convergence criterion is satisfied, which
physically means that the solution has “relaxed” to its stationary
value. One possible criterion could be 1 − ε < |u|m−1|/|u|m−1/2 <
1+ ε and 1− ε < |u|m−1/2|/|u|m < 1+ ε, where ε is a user-defined
numerical tolerance. In the next section we will show instead
another convergence criterion we have chosen for stopping the
iteration procedure, for the particular case of the RTE.

3. Application to the radiative transfer equation
and boundary conditions

The general form of the RTE in the presence of subrelativistic
bulk motion for a plasma with constant temperature Te is given
by (see Eq. (18) in BP81)

∂n
∂t
+ V · ∇n = ∇ ·

(
1

3neσ(ν)
∇n

)
+

1
3

(∇ · V) ν
∂n
∂ν

+
1
ν2
∂

∂ν

[
neσ(ν)

me
ν4

(
n + Te

∂n
∂ν

)]
+ j(ν, r), (27)

where n(ν, r) is the zero-moment occupation number of the radi-
ation field intensity, V is the plasma bulk velocity vector, σ(ν) is
the electron scattering cross-section, ne(r) is the electron density
and j(ν, r) is the source term. Because the spectral formation is
determined by the optical depth τ of the system, we use the lat-
ter quantity as the actual space variable. The solution of Eq. (27)
is fulfilled by imposing the boundary condition at the surface
defined by τ = 0, (which represents the starting point of the in-
tegration domain) for the spectral flux, which is given by

F(ν, r) = −ν3
[(

1
3neσ(ν)

∇n

)
+

1
3

Vν
∂n
∂ν

]
· (28)

Under particular symmetries of the system configuration (e.g.,
cylindrical or spherical), the problem becomes one-dimensional.
For constant electron temperature Te it is also more convenient
to use the adimensional variable x ≡ hν/kTe; moreover, when
performing numerical integration using finite-difference meth-
ods, we use a logarithmic binning of the energy through the ad-
ditional change of variable x → eq. Under these assumptions,
Eq. (28) becomes

F(q, τ) = −
[
1
3
∂J
∂τ
+

1
3

V

(
∂J
∂q
− J

)]
, (29)

where J ≡ n x3 is the specific intensity.
At the inner boundary we impose the condition

F(q, 0) = −1
2

(
1 − A
1 + A

)
J, (30)

where A is the albedo at the surface. A fully absorptive surface
(A = 0) is appropriate for a BH, while 0 < A ≤ 1 accounts,
e.g., for a NS atmosphere. However, the inner boundary con-
dition (30) depends on energy as well as space (see Eqs. (28)
and (29)). For mixed boundary value problems, no analytical so-
lutions are possible (see Appendix E in TMK97) and numeri-
cal methods prove to be unstable. However, in the energy range
where the spectrum is a powerlaw J(x, τ) = R(τ)x−α, Eq. (30)
becomes

−dR
dτ
+ β0(α + 3)R = −3

2

(
1 − A
1 + A

)
R, (31)

where β0 is the bulk velocity at the inner radius (τ = 0), and here
the problem is reduced to a standard boundary condition over
the space variable τ. Writing the derivative in terms of finite-
difference, Eq. (31) then becomes

−u1
i − u0

i

hτ
+ β0(α + 3)u0

i = −
3
2

(
1 − A
1 + A

)
u0

i , (32)

which can be written after collecting terms as

u0
i =

1
1 + hτ[β0(α + 3) +G(A)]

u1
i , (33)

where G(A) = 3/2(1 − A)/(1 + A). We then set our problem
as follows: first, because the solution u j

i of the RTE physically
represents a specific intensity, it must by definition be equal to
zero in the limits E → 0 and E → ∞, therefore we set u j

0 =

u j
Nx
= 0 (see Eqs. (12) and (20)). For the behavior of the function

u j
i for τ = 0 ( j = 0), Eq. (33) immediately allows us to define

(see Eq. (22))

L̃0
i =

1
1 + hτ[β0(α + 3) +G(A)]

, K̃0
i = 0. (34)

As outer boundary condition over τ, we impose that u
Ny
i =

0, which means that the specific intensity goes to zero for
τ→ τmax.

We emphasize that the condition u j
i > 0 for any (i, j)-value

implies a specific restriction in the choice of the step size hτ,
which ensures that L̃0

i > 0 (as β0 ≤ 0). More specifically, we
imposed the condition on hτ such that the number of steps over τ
be Nτ = τmax/hτ ≥ 10.

3.1. The iteration procedure

As already mentioned in Sect. 2, it is necessary to choose a con-
vergence criterion for stopping the iteration over the m variable.
We proceeded in the following way: at each iteration m, we com-
puted the spectral index αm of the solution u0,m

i (corresponding
to τ = 0) in a given energy range Emin − Emax. To minimize bias
or wrong estimate of αm, the definition of the energy interval
for the computation of the spectral slope must be chosen care-
fully. If the seed photon spectrum is a BB with temperature kTbb,
a reasonable choice can be the assumption Emin ≈ 7kTbb and
Emax ≈ 20kTbb, respectively, given that this interval is above the
major contribution of the BB component and below the expected
high-energy cut-off value.

Once αm is estimated, it is inserted into Eq. (34), which ac-
cordingly represents the boundary condition at τ = 0 for the
iteration m + 1 (see Eq. (22)). We then computed the new index
αm+1 for u0,m+1

i , and again inserted it into Eq. (34) at iteration
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m+2, and so on. The routine is stopped when αm and αm+1 differ
less than 10−5 provided that the condition holds for a sufficiently
high number of iterations (>100). Note that the same criterion is
adopted also if β0 = 0, even if then of course L̃0

i remains con-
stant across the iteration. We have also verified that this criterion
automatically also satisfies the convergence of the norms |u|m−1,
|u|m−1/2, and |u|m.

4. Cylindrical accretion onto a magnetized neutron
star

We applied our algorithm to solve the RTE for accretion to-
wards the polar cap of a magnetized NS, whose mathematical
formalism was developed by BW07 in the framework of the
spectral formation of accretion-powered X-ray pulsars. The rel-
atively strong magnetic field (B >∼ 1012 G) of the NS is ex-
pected to channel the accretion flow towards the polar caps, and
for low values of the altitude above the star surface, the prob-
lem can be treated in a axis-symmetric approximation where
the space variable is defined by the vertical coordinate Z. The
magnetic field moreover forces the medium to become birefrin-
gent as the effect of vacuum polarization, and birefringence en-
tails the formation of two linearly polarized modes (ordinary
and extraordinary) of the photons, each having a characteris-
tic scattering cross-section. For ordinary mode photons with en-
ergy below the first cyclotron harmonic at Ec ≈ 11.57 B12 keV
(where B12 ≡ B/1012 G), BW07 defined angle-averaged cross-
sections parallel and perpendicular to the lines of the magnetic
field as σ‖ = 10−3σT and σ⊥ = σT, respectively, where σT is
the Thomson scattering cross-section. This is indeed the only
approximation that allows to treat the problem analytically or
numerically. We note that Ferrigno et al. (2009), starting from
the analytical solutions reported in BW07, developed a model
that was later almost successfully tested on the accreting pulsar
4U 0115+63. Their model is based essentially on the convolu-
tion of the column-integrated Green’s function of the thermal
plus bulk scattering operator with a given seed photon distribu-
tion. The basic assumption of this derivation is that the velocity
profile of the accreting matter is assumed to be v(τ) ∝ −τ, which
allows one to find analytical solutions through the variable sep-
aration method (Eqs. (36) and (37) in BW07). The numerical al-
gorithm we developed directly solves the RTE, without the need
of this prescription for the dynamical configuration of the ac-
creting matter field, and we included some modifications with
respect to the approach of BW07 and Ferrigno et al. (2009).

First, following TMK97, we include in Eq. (27) a second
term in the thermal Comptonization operator that accounts for
the contribution of the bulk motion velocity of electrons in ad-
dition to their thermal (Maxwellian) component. With this pre-
scription in mind, Eq. (27) becomes

1
c
∂n
∂t
− S(ε, Z) = − v

c
∂n
∂Z
+

dv
dZ
ε

3c
∂n
∂ε
+
∂

∂Z

(
1

3neσ‖
∂n
∂Z

)

− n
tesc
+

neσ

mec2

1
ε2
∂

∂ε

[
ε4

(
n + (kTe + mev

2/3)
∂n
∂ε

)]
, (35)

where ε ≡ hν, σ = 10−1σT, while tesc is the photon mean escape
timescale (see Eq. (17) in BW07)

tesc =
neσ⊥r2

0

c
· (36)

Now, using the relation dτ = neσ‖dZ and the logarithmic binning
of the adimensional energy x ≡ hν/kTe, Eq. (35) becomes

1
neσ‖cH

∂J
∂t
− S(q, τ)

H
=

[
1 +

mev(τ)2

3kTe

]
∂2J
∂q2

+

[
3kTe(eq − 3 + δ̂) − mev(τ)2

3kTe

]
∂J
∂q

+

[
eq − 3δ̂ − ξ

2v(τ)2

Hc2

]
J +

1
3H
∂2J
∂τ2
− v(τ)

Hc
∂J
∂τ
, (37)

where we have defined the quantities

H =
σ

σ‖
kTe

mec2
, (38)

and

δ̂ =
1

3H
dβ(τ)

dτ
, (39)

where β(τ) = v(τ)/c, while the dimensionless parameter ξ is
given by (see Eq. (26) in BW07)

ξ =
15.8 r0

ṁ
· (40)

Equation (37) is given in the general form (3) and for this partic-
ular case, we have

P(τ) = 1 +
mev(τ)2

3kTe
,

Q(τ) =
3kTe(eq − 3 + δ̂) − mev(τ)2

3kTe
,

R(τ) = eq − 3δ̂ − ξ
2v(τ)2

Hc2
,

W(τ) =
1

3H
,

Z(τ) = − v(τ)
Hc
,

Ŝ(q, τ) =
S(q, τ)

H
· (41)

To solve Eq. (37), it is necessary to define the behavior of the
velocity profile β(τ). We considered two possibilities: in the first
one, we assumed a general form

β(Z) = −A (Zs/Z)−η, (42)

where the normalization constant is defined A = β0(Z0/Zs)η,
and β0 is the terminal velocity at the altitude Z0.

The continuity equation for the system here considered gives
the electron number density

ne =
Ṁ

πmp|β(Z)|cR2
0

, (43)

where ṁ ≡ Ṁ/ṀE is the mass accretion rate in Eddington units
and R0 is the radius of the accretion column.

We then define the adimensional quantities z and r0 through
the change of variables Z → RS�mz and R0 → RS�mr0,
where m ≡ M/M�, while MS� and RS� are the Sun mass and
Schwarzschild radius, respectively. The effective vertical optical
depth of the accretion column is then given by

τ(z) =
∫ z

z0

neσ‖dZ′ = C
ṁ

A r0
2

(
zη+1 − zη+1

0

)
η + 1

, (44)
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Fig. 1. Emerging spectra obtained from the solution of Eq. (37) for different values of the electron temperature kTe and velocity profile defined in
Eq. (45). In both cases the fixed parameters are kTbb = 1 keV, τ = 0.2, η = 0.5, r0 = 0.25, A = 1. Left panel: β0 = 0.1. Right panel: β0 = 0.64.
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Fig. 2. Same as Fig. 1 but for different values of the optical depth τ. Fixed parameters are kTbb = 1 keV, η = 0.5, β0 = 0.64, r0 = 0.25, A = 1. Left
panel: kTe = 5 keV. Right panel: kTe = 15 keV.

where C = 2.2 × 10−3, and z0 is the vertical coordinate at the
NS surface.

Inverting relation (44), we also define the velocity profile of
the accreting matter as a function of the optical depth τ instead
of the space variable z

β(τ) = −A
⎧⎪⎪⎨⎪⎪⎩zη+1

0 +
A r2

0(1 + η)τ

Cṁ

⎫⎪⎪⎬⎪⎪⎭
− η
η+1

· (45)

As a second possibility, following BW07, we considered the ve-
locity profile

β(τ) = −Ψτ, (46)

where Ψ = 0.67ξ/z0 (see Eq. (32) in BW07).
Given that in our model the optical depth τ represents one

of the free parameters, once it is provided in input together with
adimensional accretion column radius r0, the accretion rate ṁ
must be first computed either from Eq. (44), if β(τ) is defined as
in Eq. (45), or from Eq. (28) in BW07 if β(τ) belongs to Eq. (46).
This step is necessary to determine the ξ parameter (Eq. (40)),
and requires fixing the maximum altitude of the accretion col-
umn zmax. We assumed zmax = 2z0, and all emerging spectra (see
next section) were computed with this choice.

5. Results

In this section we report some examples of the theoretical spec-
tra obtained by the numerical solution of Eq. (37) for different
sets of the physical quantities that define the system. We con-
sider a BB seed photon spectrum at given temperature kTbb with
exponential spatial distribution across the vertical direction, ac-
cording to

S (x, τ) = Cne−τ
kT 3

e x3

ekTe/kTbb x − 1
, (47)

with the normalization constant defined as Cn = R2
km/D

2
10, where

Rkm and D10 are the BB emitting area in kilometers and the
source distance in units of 10 kpc, respectively. The spectra
were computed using the velocity profiles defined in Eqs. (45)
and (46), respectively. The common parameters for both cases
are consequently the BB temperature kTbb, the electron temper-
ature kTe, the optical depth τ, the albedo at the inner surface A
and the radius of the accreting column r0. On the other hand, for
β(τ) belonging to Eq. (45), additional parameters are the index η
and the terminal velocity at the star surface β0. We first present
the results for this second physical case.

In Fig. 1 we show the emerging spectra for different val-
ues of the electron temperature kTe and two terminal velocities
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Fig. 3. Same as Fig. 1 but for different values of the index of the velocity profile. Fixed parameters are kTbb = 1 keV, τ = 0.2, β0 = 0.64, r0 = 0.25,
A = 1. Left panel: kTe = 5 keV. Right panel: kTe = 15 keV.
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Fig. 4. Same as Fig. 1 but for different values of the inner velocity β0. Fixed parameters are kTbb = 1 keV, τ = 0.2, η = 0.5, r0 = 0.25, A = 1. Left
panel: kTe = 5 keV. Right panel: kTe = 15 keV.

β0 = 0.1 and β0 = 0.64. As expected, both times higher values
of kTe produce flatter spectra and push the cut-off energy Ec to
higher energies; on the other hand, the bulk contribution as a sec-
ond channel of Comptonization depends on the value of kTe. The
two extreme temperature values reported here, kTe = 5 keV and
kTe = 50 keV, are particularly instructive: for low electron tem-
peratures the spectrum changes from BB-like when β0 = 0.1 to
a cut-off power law with Ec >∼ 30 keV when β0 = 0.64, while the
spectral change is much less enhanced for a hot plasma. These
can be considered as typical examples of bulk-dominated and
thermal-dominated Comptonization spectra, respectively.

Together with the electron temperature, the optical depth τ is
an important parameter that plays a key role in determining the
spectral slope and cut-off energy, as clearly shown in Fig. 2. We
note that in Figs. 1 and 2 the index of the velocity profile was
chosen to be η = 0.5, typical of accretion onto a compact object
where gravity and radiation pressure are the only force terms that
determine the dynamical configuration. Here, the terminal value
of the matter velocity β0 depends on the ratio of the radiative
and gravitational forces, provided the condition |Fr|/|Fg| <∼ 1 is
satisfied. This relatively simple approach is valid for low values
of optical depth τ, while when τ > 1 radiative transfer becomes
important and the problem requires in principle a more accurate
radiation-hydrodynamics treatment.

It is outside the scope of this paper to compute the exact ve-
locity profile for accreting matter under the presence of a strong

radiation field in a high optical depth environment. We merely
introduced a simple parametrization for modifying the velocity
field by changing the index η, with the results shown in Fig. 3,
for two different values of the electron temperature kTe. As Fig. 3
shows, the lower the value of η, the harder the spectrum: this be-
havior can be explained in a quantitative and a qualitative way.
Indeed, as η increases, the velocity profile β(z) becomes sharper,
and for a fixed terminal velocity β0, electron temperature kTe,
and optical depth τ, while photons diffuse through the bounded
medium, on average the energy of the electrons (caused by their
Maxwellian plus bulk motion) will be lower, and consequently
the net energy gain of the photons due to inverse Compton
will be less. From the mathematical point of view, it is worth
mentioning that Mastichiadis & Kylafis (1992, hereafter MK92)
reported the analytical solution of the RTE in the Fokker-Planck
approximation with the variable separation method for spherical
accretion without magnetic field in the limit Te = 0. Assuming
a general velocity profile βr ∝ r−η, the authors showed that
the spectral index of the kth-Comptonization order emerging
spectrum yields αk = 3+3λk/(2−η) (see Eq. (1)), where λk is the
kth-eigenvalue of the space operator. Using Eq. (B12) of MK92,
it follows immediately that as η increases, the spectral index αk
increases as well. This mathematical result in terms of spectral
formation can be considered as general in the framework of the
FP treatment, and is accordingly qualitatively meaningful for our
research.
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Fig. 5. Same as Fig. 1 but for different values of the albedo A, with the velocity profile of Eq. (45). Fixed parameters are kTbb = 1 keV, τ = 0.4,
η = 0.5, β0 = 0.64, r0 = 0.25. Left panel: kTe = 5 keV. Right panel: kTe = 15 keV.
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Fig. 6. Same as Fig. 1 but for different values of the accretion column radius r0, with the velocity profile of Eq. (45). Fixed parameters are
kTbb = 1 keV, τ = 0.2, η = 0.5, β0 = 0.64, A = 1. Left panel: kTe = 5 keV. Right panel: kTe = 15 keV.

We also emphasize that analytical solutions for η � 0.5 have
been possible for MK92 only because of the condition Te = 0,
which drops the thermal Comptonization operator in the RTE,
while when Te > 0 this is possible only for η = 0.5 (TMK97,
F08).

In Fig. 4 we show results for different terminal bulk veloc-
ities β0 for two electron temperature values. The figure can be
considered an extension and completion of Fig. 1 because more
values of β0 are shown to better appreciate the induced changes
in the emerging spectra.

The spectral modifications as a result of different values of
the albedo A at the inner surface are instead shown in Fig. 5,
where we explored full absorption (A = 0) and full reflection
(A = 1), together with other intermediate values. In the frame-
work of a physical link to astrophysical objects it would be nat-
ural to associate a BH to the condition A = 0 and a NS to
the condition A = 1, respectively (Titarchuk & Fiorito 2004;
Farinelli & Titarchuk 2011), even though this latter assumption
may be considered an oversimplification of the problem. A most
realistic approach would consist indeed in an energy-dependent
treatment of the albedo, a problem that could be faced only with
Montecarlo simulations, with the additional complications aris-
ing from a detailed treatment of the star photosphere (surface)
properties.

For our unavoidably simplified assumptions, the net effect of
increasing values of A is a progressive flattening of the emerging

spectra. This is physically explained because when A > 0, a frac-
tion of photons (which becomes 100% when A = 1) suffers on
average more scattering with respect to A = 0. Qualitatively, the
spectral modification leads in the same direction as an enhanced
optical depth of the system.

The last parameter that strongly influences the spectral for-
mation is the radius of the accretion column r0, whose effects are
shown in Fig. 6. Indeed, following the BW07 prescription, the
mean escape time for photons using the diffusion approximation
tesc ∝ r2

0 (see Eq. (36)). On the other hand, both the bulk and
thermal Comptonization parameters (ybulk and yth, respectively)
are related to the mean number of scatterings that photons
experience in the medium via

ybulk ≈ Nbulk
av ζbulk, (48)

yth ≈ Nth
avζth,

where Nbulk
av , ζbulk, Nth

av and ζth are the averaged number of scat-
terings and the fraction energy gain per scattering for bulk and
thermal Comptonization, respectively. Both Nbulk

av and Nth
av are of

course also proportional to tesc (see Eqs. (94)–(97) in BW07).
Evidently therefore, for fixed velocity profile parameters A

and η (see Eq. (42)), once the optical depth τ is defined (see
Eq. (44)), to keep its value constant for increasing r0 (as re-
ported in Fig. 6), the accretion rate ṁ must also increase in a way
to keep the ratio ṁ/r2

0 constant. Combining Eq. (36) and (43)
yields tesc ∝ ṁ, which in turn leads to an enhancement of the
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Fig. 7. Emerging spectra obtained from the solution of Eq. (37) for different values of the electron temperature kTe, with the velocity profile of
Eq. (46). In both cases the fixed parameters are kTbb = 1 keV, r0 = 0.25, A = 1. Left panel: τ = 0.2. Right panel: τ = 0.4.
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Fig. 8. Same as Fig. 1 but for different values of the optical depth τ, with the velocity profile of Eq. (46). Fixed parameters are kTbb = 1 keV,
r0 = 0.25, A = 1. Left panel: kTe = 5 keV. Right panel: kTe = 15 keV.
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Fig. 9. Same as Fig. 1 but for different values of the albedo A, with the velocity profile of Eq. (46). Fixed parameters are kTbb = 1 keV, τ = 0.4,
r0 = 0.25. Left panel: kTe = 5 keV. Right panel: kTe = 15 keV.

Comptonization parameters ybulk and yth in Eq. (49) with a hard-
ening of the spectral shape.

Considering now the velocity profile defined in Eq. (46), we
see that the results are qualitatively the same as in Eq. (45) as
far as the spectral modifications induced by variations of kTe
are concerned (Fig. 7), τ (Fig. 8) and A (Fig. 9), respectively.
But there are opposite effects that are induced in the emerging

spectra by different values of the accretion column radius r0 for
the velocity profile here considered. Indeed, using Eq. (40) and
the definition of τ in Eq. (28) of BW07, which allows us to ex-
press the accreting matter velocity in terms of the z-coordinate,
in spite of the optical depth τ, it is straightforward to see that
β(z) ∝ r−1/2

0 . In particular, if z0 = 2.42 and zmax = 2z0 we have
βmax = 0.60 for r0 = 0.1, βmax = 0.38 for r0 = 0.25, βmax = 0.27
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Fig. 10. Same as Fig. 1 but for different values of the accretion column radius r0, with the velocity profile of Eq. (46). Fixed parameters are
kTbb = 1 keV, τ = 0.2, A = 1. Left panel: kTe = 5 keV. Right panel: kTe = 15 keV.

Table 1. Parameter description of the xspec model compmag.

Parameter Units Description
kTbb (keV) Seed photon blackbody temperature
kTe (keV) Electron temperature
τ Optical depth of the accretion column
η Index of the velocity profile (Eq. (45))
β0 Terminal velocity at the NS surface

(Eq. (45))
r0 Radius of the accretion column in

units of the NS Schwarzschild radius
A Albedo at the NS surface
Flag =1, β(τ) from Eq. (45)

=2, β(τ) from Eq. (46)
Norm R2

km/D
2
10

for r0 = 0.5 and βmax = 0.2 for r0 = 1, respectively. Note that be-
cause Eq. (46) describes matter that stagnates at the star surface,
here βmax represents the velocity at the accretion column alti-
tude zmax. In other words, while using Eq. (45), the choice of r0
does not modify the velocity field of the accreting matter, which
is only determined by the choice of β0 and η, for (46) as r0 in-
creases the bulk contribution to the spectral formation becomes
less important, and this drop is not compensated for by the in-
crease of the photon mean escape time tesc, which, as explained
above, would instead contribute to spectral hardening.

6. Implementation in the XSPEC package

Our model will be publically available and distributed as a con-
tributed model to the official xspec1 web page.

In Table 1 we report a summary of the free parameters of
the model with their physical meaning. The code is written
using C-language, and can be easily installed following the stan-
dard procedure reported in the official xspec manual and in the
brief cookbook, which will be delivered together with the source
code. As a general concern for users, we point out that usually
the emerging spectrum obtained from the Comptonization of a
seed photon population with any given energy distribution S (E)
can be presented as the sum of the seed spectrum and its convolu-
tion with the scattering Green’s function G(E, E0) of the electron

1 http://heasarc.nasa.gov/xanadu/xspec/newmodels.html

plasma, each with their relative weight, according to the general
formalism

F(E) =
Cn

A + 1
[S (E) + A × S (E) ∗G(E, E0)], (49)

where Cn is a normalization constant. The ratio A/(A + 1) is the
Comptonization fraction, and its value qualitatively determines
the contribution to the total spectrum of the Comptonized pho-
tons. The value of A, here not to be confused with the albedo,
may depend on several geometrical and physical factors, such as
the spatial seed photon distribution inside the system configura-
tion (see Fig. 4 in TMK97). The lower the value of A, the more
enhanced the direct seed photon spectrum S (E). Examples of
xspecmodels that use the definition in Eq. (49) are bmc (TMK97)
and comptb (F08). Either model, however, does not solve the full
RTE including the photon spatial diffusion and distribution, the
latter of which is an unknown quantity that is phenomenologi-
cally described through the continuum parameter log(A). On the
other hand, it is not possible to change the value of log(A) ar-
bitrarily in our present model, i.e., according to the observed
spectra. Its value is implicitly determined once the seed photon
spatial distribution is fixed.

We presented the results of simulated spectra assuming an
exponential distribution over τ for S (E), which was assumed to
be a BB; then, the transition from the low-energy part of the
spectrum (the Rayleigh regime for E <∼ 3kTbb) to the high-
energy (Comptonized) powerlaw shape is almost smooth, which
corresponds approximately to A � 1 in Eq. (49). Other seed
photons spatial distributions can produce a different onset be-
tween the BB peak and the powerlaw-like regime. In general, for
observed spectra where a direct and enhanced BB-like compo-
nent is required by the fit, our claim is to model the source con-
tinuum with modelization of the type bb + compmag by prefer-
ably keeping equal to each other the temperatures of the direct
and Comptonized BB component.

7. Conclusions

We have developed a numerical code for solving elliptic par-
tial differential equations based on a relaxation method with fi-
nite differences. In particular, we reported a specific applica-
tion of the algorithm to the radiative transfer equation in the
Fokker-Planck approximation, which is of particular interest for
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high-energy astrophysical applications. We considered cylindri-
cal accretion onto the polar cap of a magnetized neutron star,
using the mathematical formulation of the problem reported in
Becker & Wolff (2007) with some modifications. Specifically,
we included the second-order bulk Comptonization term in the
scattering operator and we considered different velocity profiles
for the accreting matter.

The code for the computation of the emerging spectra in this
configuration has been written with the aim to implement it in
the xspec package and will be delivered to the scientific com-
munity. Because angle-averaged cross-sections caused by the
magnetic field were included, the model is suitable to be ap-
plied to the observed spectra of sources where most of spec-
tral formation is claimed to form close to a NS with high mag-
netic field (B >∼ 1012 G), such as accreting X-ray pulsars and
supergiant fast X-ray transients. Of course there are some un-
avoidable simplifications in the model, such as the assumption
of constant electron temperature of the accretion column. We
note, however, that the isothermal condition is typical of any
Comptonization model implemented in XSPEC because it is
fundamental for users to reach a compromise between the ac-
curacy of the physical treatment and the computational speed.
More accurate theoretical investigations of the accretion pro-
cesses can be performed only with MHD simulations performed
through PC cluster-computing resources, which are beyond the
scope of the present work.

As in many theoretical models, the number of available
free parameters is higher than the number of the observable ones.

Therefore a correct working approach is to keep some param-
eters fixed during the X-ray spectral fitting procedure to avoid
degeneracy.

If this model is used in any publication, we kindly ask the
authors to cite this paper in the reference list.
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